# 2024 Country Club Estates Consumer Confidence Report #### Is my water safe? Yes! Your water is safe to drink. We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. #### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). #### Where does my water come from? Your water comes from a well drilled into the Snake River Plains aquifer.. The water is naturally filtered by the rocks and soil, and we conduct regular testing to ensure it stays clean and safe for drinking. ### Source water assessment and its availability Our records show that your water is clean and plentiful. There is no evidence that would suggest any foreseeable shortage or contamination of your drinking water. We are all responsible for ensuring that Idaho's groundwater remains clean and safe to drink. You can help prevent groundwater contamination by taking a few easy steps. Be mindful of the amount of pesticides you use on your property. Avoid dumping chemicals onto the ground, where they might leach down into the soil. And keep any potential contamination away from the well. If you have any questions about ways you can protect your groundwater, please contact Walker Water Systems or the Idaho Department of Environmental Quality. #### Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. #### How can I get involved? If you're interested in being more involved in water management, you may contact your homeowners' association or property manager. Or, you may contact Walker Water Systems at the contact information on the last page. #### **Additional Information for Lead** The system inventory does not include lead service lines. A review of the planning documents didn't yield any information. However, interviews with the HOA staff confirmed that there were no lead service lines in the drinking water distribution system. HOA staff has completed multiple pipeline repairs, and is familiar with the composition of the pipelines. The following link can be used to access inventory information - https://walkerwaterquality.com/country-club-estates/. Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. COUNTRY CLUB ESTATES is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact COUNTRY CLUB ESTATES (Public Watersystem Id: ID5270004) by calling 208-539-5277 or emailing ccewaterassoc@gmail.com. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Country Club Estates is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. ## **Water Quality Data Table** In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table. | | | | Detect | Range | | | | | | |--------------------------------------------|---------------------|------------------------|---------------------|-------|------|----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|--| | Contaminants | MCLG<br>or<br>MRDLG | MCL,<br>TT, or<br>MRDL | In<br>Your<br>Water | Low | High | Sample<br>Date | Violation | Typical Source | | | Inorganic Contaminants | | | | | | | | | | | Arsenic (ppb) | 00 | 10 | 2 | NA | NA | 2018 | No | Erosion of natural<br>deposits; Runoff<br>from orchards;<br>Runoff from glass<br>and electronics<br>production<br>wastes | | | Barium (ppm) | 2 | 2 | 0.2 | NA | NA | 2018 | No | Discharge of<br>drilling wastes;<br>Discharge from<br>metal refineries;<br>Erosion of natural<br>deposits | | | Fluoride (ppm) | 4 | 4 | 0.44 | NA | NA | 2018 | No | Erosion of natural<br>deposits; Water<br>additive which<br>promotes strong<br>teeth; Discharge<br>from fertilizer<br>and aluminum<br>factories | | | Nitrate [measured<br>as Nitrogen]<br>(ppm) | 10 | 10 | 2.66 | NA | NA | 2023 | No | Runoff from<br>fertilizer use;<br>Leaching from<br>septic tanks,<br>sewage; Erosion<br>of natural<br>deposits | | | Microbiological C | ontamin | ants | | | | | | | | | | MCLG | MCL, | | D | etect<br>In | Ra | Range | | | | | | | |-------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----|------------------------------------------|---------------|---------------------|-------|-------------|----|------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------| | Contaminants | or<br>MRDLG | TT, or<br>MRDL | | | | Your<br>Vater | Low | High | Sam<br>Da | • | Viola | tion | Typical Source | | E. coli (RTCR) - in<br>the distribution<br>system (positive<br>samples) | 00 | Routine and repeat samples are total coliform positive and either is E. coli positive or system fails to take repeat samples following E. coli positive routine sample or system fails to analyze total coliform positive repeat sample for E. coli. | | | el<br>el<br>oli<br>em<br>eat<br>ng<br>or | 00 | NA | NA | 202 | 24 | No | O | Runoff from<br>fertilizer use;<br>Leaching from<br>septic tanks,<br>sewage; Erosion<br>of natural<br>deposits | | Total Coliform<br>(RTCR) (% positive<br>samples/month) | NA | ТТ | | | NA | NA | NA | 202 | 24 | No | ) | Naturally present in the environment | | | Radioactive Conta | minants | | | | | | | | | | | | | | Uranium (ug/L) | 00 | 30 | | | | 2.6 | NA | NA | 20 | 19 | No | ) | Erosion of natural deposits | | Contaminants | | AL | Your AL Water Low H | | | Exce | mple<br>eedin<br>AL | g Sar | nple<br>ate | | eeds<br>AL | 7 | Typical Source | | Inorganic Contam | inants | | | | | | | T | | | | - | | | Copper - action lev<br>at consumer taps<br>(ppm) | rel<br>1.3 | 1.3 | 0.129 | NA | NA | | 0 | 20 | 022 | | No | hou: | rosion of<br>sehold plumbing<br>ems; Erosion of<br>ural deposits | | Lead - action level<br>consumer taps (pp | ()() | 15 | 6 | NA | NA | | 0 | 20 | 022 | | No | hou: | rosion of<br>sehold plumbing<br>ems; Erosion of<br>ıral deposits | ## **Violations and Exceedances** # **Additional Contaminants** In an effort to insure the safest water possible the State has required us to monitor some contaminants not required by Federal regulations. Of those contaminants only the ones listed below were found in your water. | Contaminants | State MCL | Your Water | Violation | Explanation and Comment | |--------------|-----------|------------|-----------|-------------------------| | Nickel | NA | 00 mg/L | No | | # **Undetected Contaminants** The following contaminants were monitored for, but not detected, in your water. | Contaminants | MCLG<br>or<br>MRDLG | MCL,<br>TT, or<br>MRDL | | Violation | Typical Source | |------------------------------|---------------------|------------------------|----|-----------|------------------------------------------------------------------------------------------------------------------------------------| | 1,1,1-Trichloroethane (ppb) | 200 | 200 | ND | No | Discharge from metal degreasing sites and other factories | | 1,1,2-Trichloroethane (ppb) | 3 | 5 | ND | No | Discharge from industrial chemical factories | | 1,1-Dichloroethylene (ppb) | 7 | 7 | ND | No | Discharge from industrial chemical factories | | 1,2,4-Trichlorobenzene (ppb) | 70 | 70 | ND | No | Discharge from textile-finishing factories | | 1,2-Dichloroethane (ppb) | 0 | 5 | ND | No | Discharge from industrial chemical factories | | 1,2-Dichloropropane (ppb) | 0 | 5 | ND | No | Discharge from industrial chemical factories | | Alpha emitters (pCi/L) | 0 | 15 | ND | No | Erosion of natural deposits | | Antimony (ppb) | 6 | 6 | ND | No | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition. | | Benzene (ppb) | 0 | 5 | ND | No | Discharge from factories; Leaching from gas storage tanks and landfills | | Beryllium (ppb) | 4 | 4 | ND | No | Discharge from metal refineries and coal-<br>burning factories; Discharge from<br>electrical, aerospace, and defense<br>industries | | Cadmium (ppb) | 5 | 5 | ND | No | Corrosion of galvanized pipes; Erosion of | | Contaminants | MCLG<br>or<br>MRDLG | MCL,<br>TT, or<br>MRDL | | Violation | Typical Source | |-----------------------------------------------|---------------------|------------------------|----|-----------|-------------------------------------------------------------------------------------------------------------------------| | | | | | | natural deposits; Discharge from metal refineries; runoff from waste batteries and paints | | Carbon Tetrachloride (ppb) | 0 | 5 | ND | No | Discharge from chemical plants and other industrial activities | | Chlorobenzene<br>(monochlorobenzene)<br>(ppb) | 100 | 100 | ND | No | Discharge from chemical and agricultural chemical factories | | Chromium (ppb) | 100 | 100 | ND | No | Discharge from steel and pulp mills;<br>Erosion of natural deposits | | Dichloromethane (ppb) | 0 | 5 | ND | No | Discharge from pharmaceutical and chemical factories | | Ethylbenzene (ppb) | 700 | 700 | ND | No | Discharge from petroleum refineries | | Mercury [Inorganic] (ppb) | 2 | 2 | ND | No | Erosion of natural deposits; Discharge<br>from refineries and factories; Runoff from<br>landfills; Runoff from cropland | | Nitrite [measured as<br>Nitrogen] (ppm) | 1 | 1 | ND | No | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits | | Radium (combined 226/228) (pCi/L) | 0 | 5 | ND | No | Erosion of natural deposits | | Selenium (ppb) | 50 | 50 | ND | No | Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines | | Styrene (ppb) | 100 | 100 | ND | No | Discharge from rubber and plastic factories; Leaching from landfills | | Tetrachloroethylene (ppb) | 0 | 5 | ND | No | Discharge from factories and dry cleaners | | Thallium (ppb) | .5 | 2 | ND | No | Discharge from electronics, glass, and<br>Leaching from ore-processing sites; drug<br>factories | | Toluene (ppm) | 1 | 1 | ND | No | Discharge from petroleum factories | | Trichloroethylene (ppb) | 0 | 5 | ND | No | Discharge from metal degreasing sites and other factories | | Vinyl Chloride (ppb) | 0 | 2 | ND | No | Leaching from PVC piping; Discharge from plastics factories | | Xylenes (ppm) | 10 | 10 | ND | No | Discharge from petroleum factories; Discharge from chemical factories | | cis-1,2-Dichloroethylene | 70 | 70 | ND | No | Discharge from industrial chemical | | Contaminants | MCLG<br>or<br>MRDLG | MCL,<br>TT, or<br>MRDL | | Violation | Typical Source | |----------------------------------|---------------------|------------------------|----|-----------|----------------------------------------------| | (ppb) | | | | | factories | | o-Dichlorobenzene (ppb) | 600 | 600 | ND | No | Discharge from industrial chemical factories | | p-Dichlorobenzene (ppb) | 75 | 75 | ND | No | Discharge from industrial chemical factories | | trans-1,2-Dichloroethylene (ppb) | 100 | 100 | ND | No | Discharge from industrial chemical factories | | Unit Descriptions | | |--------------------------|-------------------------------------------------------------------------------| | Term | Definition | | ug/L | ug/L : Number of micrograms of substance in one liter of water | | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | pCi/L | pCi/L: picocuries per liter (a measure of radioactivity) | | % positive samples/month | % positive samples/month: Percent of samples taken monthly that were positive | | NA | NA: not applicable | | ND | ND: Not detected | | NR | NR: Monitoring not required, but recommended. | | positive samples | positive samples/yr: The number of positive samples taken that year | | Important Drin | Important Drinking Water Definitions | | | | | | | | |--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--| | Term | Definition | | | | | | | | | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | | | | | | | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | | | | | | | | TT | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | | | | | | | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | | | | | | | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | | | | | | | | Important Drin | Important Drinking Water Definitions | | | | | | | | |-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--| | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | | | | | | | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | | | | | | | | MNR | MNR: Monitored Not Regulated | | | | | | | | | MPL | MPL: State Assigned Maximum Permissible Level | | | | | | | | | 90th Percentile | Compliance with the lead and copper action levels is based on the 90th percentile lead and copper levels. This means that the concentration of lead and copper must be less than or equal to the action level in at least 90% of the samples collected. | | | | | | | | ## For more information please contact: Contact Name: WORTHINGTON, DUANE Address: PO BOX 771 JEROME, ID 83338 Phone: 208-539-5277